Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 232: 116331, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37308072

RESUMO

Using biochar as a partial replacement of Portland cement in cementitious materials is a promising solution to mitigate negative environmental impacts. However, current studies in available literature primarily focus on the mechanical properties of composites made with cementitious materials and biochar. Therefore, this paper reports the effects of the type of biochar, the percentage of biochar addition, and the particle size of the biochar on the removal efficiency of Cu, Pb, and Zn, as well as the effect of contact time on the removal efficiency of Cu, Pb, and Zn, along with the compressive strength. The peak intensities of OH-, CO32- and Calcium Silicate Hydrate (Ca-Si-H) peaks increase with increasing biochar addition levels, reflecting increased hydration product formation. The reduction of particle size of biochar causes the polymerization of the Ca-Si-H gel. However, no significant changes were observed in heavy metal removal, irrespective of the percentage of biochar addition, the particle size of biochar, or the type of biochar added to the cement paste. Adsorption capacities above 19 mg/g, 11 mg/g and 19 mg/g for Cu, Pb and Zn were recorded in all composites at an initial pH of 6.0. The Pseudo second order model best described the kinetics of the Cu, Pb, and Zn removal. The rate of adsorptive removal increases with the decrease in the density of the adsorbents. Over 40% of Cu and Zn were removed as carbonates and hydroxides through precipitation, whereas over 80% of Pb removal was via adsorption. Heavy metals bonded with OH-, CO32- and Ca-Si-H functional groups. The results demonstrate that biochar can be used as a cement replacement without negatively impacting heavy metal removal. However, neutralization of the high pH is needed before safe discharge.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Chumbo , Metais Pesados/química , Carvão Vegetal/química , Adsorção , Zinco/análise , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 815: 152936, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995593

RESUMO

Heavy metals are one of the major chemical pollutant groups in urban runoff. The application of porous concrete is a potential alternative to conventional runoff management systems with the ability to remove heavy metals. Hence, a thorough understanding of the heavy metal removal mechanisms and constraints of conventional porous concrete opens a path for the development of effective modifications. This review critically discusses the major contributors in ordinary porous concrete which supports heavy metal removal. The effects of initial concentration, contact time and competing ions on heavy metal removal using porous concrete are also discussed. Additionally, the effect of decalcification, atmospheric carbonation, acid influent on heavy metal removal is reviewed. The major drawback of porous concrete is the high pH (>8.5) of the effluent water, decalcification of the porous concrete and leaching of adsorbed pollutants. Overall, the addition of adsorbent materials to the porous concrete increases removal efficiencies (7% - 65% increase) without neutralizing the effluent pH. Meanwhile, the addition of Reduced Graphene Oxide is successful in reducing the leachability of the removed heavy metals. The addition of pozzolanic materials can lower the effluent pH while maintaining similar removal efficiencies to unmodified porous concrete. Therefore, developing a novel method of neutralizing the effluent pH must be prioritized in future studies. Additionally, the toxicity that can occur due to the abrasion of modified porous concrete requires study in future research. Further, advanced characterization methods should be used in future studies to understand the mechanisms of removal via the modified porous concrete materials.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Chuva , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...